Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews April 30, 2025 April 23, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Calculus Based Section: Variable Forces
So far we have looked at the work done by a constant force. In the physical world, however, this often is not the case. Consider a mass moving back and forth on a spring. As the spring gets stretched or compressed it exerts more force on the mass. Thus the force exerted by the spring is dependent on the position of the particle. We will examine how to calculate work by a position dependent force, and then go on to give a complete proof of the Work-Energy theorem.
Consider a force acting on an object over a certain distance that varies according to the displacement of the object. Let us call this force F(x), as it is a function of x. Though this force is variable, we can break the interval over which it acts into very small intervals, in which the force can be approximated by a constant force. Let us break the force up into N intervals, each with length δx. Also let the force in each of those intervals be denoted by F1, F2, FN. Thus the total work done by the force is given by:
Thus
Thus
W = ![]() |
We have generated an integral equation that specifies the work done over a specific distance by a position dependent force. It must be noted that this equation only holds in the one dimensional case. In other words, this equation can only be used when the force is always parallel or antiparallel to the displacement of the particle. The integral is, in effect, quite simple, as we only have to integrate our force function, and evaluate at the end points of the particle's journey.
Though a calculus based proof of the Work-Energy theorem is not completely necessary for the comprehension of our material, it allows us to both work with calculus in a physics context, and to gain a greater understanding of exactly how the Work-Energy Theorem works.
Using that equation, the equation we derived for work done by a variable force, we can manipulate it to yield the work-energy theorem. First we must manipulate our expression for the force acting on a given object:
Now we plug in our expression for force into our work equation:
Integrating from vo to vf :
This result is precisely the Work-Energy theorem. Since we have proven it with calculus, this theorem holds for constant and nonconstant forces alike. As such, it is a powerful and universal equation which, in conjunction with our study of energy in the next topic, will yield powerful results.
Please wait while we process your payment