Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews April 30, 2025 April 23, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Problems on the Relativistic Doppler Effect
Problem : A train is moving directly towards you at 2×108 m/s. The (monochromatic) light on the front of the train has a wavelength of 250 nanometers in the frame of the train. What wavelength do you observe?
Using c = fλ we find the frequency of the emitted light to be 1.2×1015 Hz. The observed frequency is given by:f = ![]() ![]() ![]() |
Problem : Light that is assumed to be from the 22.5 cm microwave Hydrogen line is measured at a frequency of 1.2×103 MHz. How fast is the galaxy from which this light was emitted receding from the earth?
This is the famous 'redshift' effect. We know that the ratio1.23 = ![]() |
Problem :
Consider two ultra-high-speed drag racers. One drag racer has a red stripe on the side and overtakes the
other drag racer at a relative speed of c/2. If the red stripe has wavelength 635 nanometers, what
color is the stripe as observed by the other drag racer (that is, what is the wavelength) at the exact instant
the overtaking occurs as measured in the frame of the racer-being-overtaken?
Problem : In the previous problem, what is the observed color of the stripe at the instant the overtaken drag racer observes herself being overtaken?
This corresponds to the other scenario where the faster racer has already passed but the slower one is now observing the overtaking. In this case f = f'/γ so λ = γλ' = 2×635 = 1270 nanometers (we have the same γ as calculated in the previous problem). This is in fact well out of the visible range (off the infra-red end).Problem : Explain (qualitatively if you like) why an observer moving in a circle around a stationary source observes the same Doppler effect as one of the transverse cases discussed in Section 1. Which one and what is the frequency shift? Use the fact that if an inertial observer observes the clock of an accelerating object, it is only the instantaneous speed which is important in calculating the time dilation.
This is in fact equivalent to the first transverse case described in which a stationary observer observes the light from a passing source as it is directly alongside him (that is, the case where light is coming at an angle). The instantaneous speed of the circling observer is constant at v. In the frame of the source (call it F') it emits flashes every Δt' = 1/f' seconds. But the source sees the observer's time as being dilated, thus Δt' = γΔt. The observer and source remain a constant distance from one another (because of the circular motion), so there are no longitudinal effects. The flashes are observed in F (the observer's frame) at intervals ΔT = Δt'/γ = 1/(f'γ). Thus f = f'γ which is the same result as when the moving source is just passing the observer.Please wait while we process your payment