Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews May 1, 2025 April 24, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Position, Velocity, and Acceleration as Vectors
In the last SparkNote, we discussed position functions in one dimension. The value of such a function at a particular time t0, x(t0), was an ordinary number which represented the position of the object along a single line. In two and three dimensions, however, the position of an object must be specified by a vector. We therefore need to upgrade our one- dimensional function x(t) to x(t), so that at each moment in time the position of the object is now given in terms of a vector. Whereas x(t) was a scalar-valued function, x(t) is vector-valued. They are both, nevertheless, position functions.
As we might expect, the individual components of x(t) correspond to one-dimensional position functions in each of the two or three directions of motion. For instance, for motion in three dimensions, the components of x(t) can be labeled x(t), y(t), and z(t), and correspond to one-dimensional position functions in the x-, y-, and z-directions, respectively. If we have three-dimensional motion with constant velocity, x(t) = vt, where v = (vx, vy, vz) is a constant vector, the above vector equation for x(t) breaks up into three one-dimensional equations:
What makes the generalization to vectors particularly simple is that the relationships between position, velocity, and acceleration stay exactly the same. Whereas before we had
As an example, consider the position function
It is important to keep in mind that, although the vector equations for kinematics look almost identical to their scalar counterparts, the range of physical phenomena that they can describe is far greater. The last example suggests that for the same object, completely different motions can be going on in the x-, y-, and z-directions, even though they are all part of one overall motion. This idea of breaking up an object's motion into components will help us analyze two- and three-dimensional motion by using ideas we've already learned from the one-dimensional case. In the next section, we put some of these methods to work when we discuss motion with constant acceleration in more than one dimension.
Please wait while we process your payment