Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews April 30, 2025 April 23, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Position, Velocity, and Acceleration in One Dimension
We have already discussed examples of position functions in the previous section. We now turn our attention to velocity and acceleration functions in order to understand the role that these quantities play in describing the motion of objects. We will find that position, velocity, and acceleration are all tightly interconnected notions.
In one dimension, velocity is almost exactly the same as what we normally call speed. The speed of an object (relative to some fixed reference frame) is a measure of "how fast" the object is going--and coincides precisely with the idea of speed that we normally use in reference to a moving vehicle. Velocity in one-dimension takes into account one additional piece of information that speed, however, does not: the direction of the moving object. Once a coordinate axis has been chosen for a particular problem, the velocityv of an object moving at a speed s will either be v = s, if the object is moving in the positive direction, or v = - s, if the object is moving in the opposite (negative) direction.
More explicitly, the velocity of an object is its change in position per unit time, and is hence usually given in units such as m/s (meters per second) or km/hr (kilometers per hour). The velocity function, v(t), of an object will give the object's velocity at each instant in time--just as the speedometer of a car allows the driver to see how fast he is going. The value of the function v at a particular time t0 is also known as the instantaneous velocity of the object at time t = t0, although the word "instantaneous" here is a bit redundant and is usually used only to emphasize the distinction between the velocity of an object at a particular instant and its "average velocity" over a longer time interval. (Those familiar with elementary calculus will recognize the velocity function as the time derivative of the position function.)
Now that we have a better grasp of what velocity is, we can more precisely define its relationship to position.
We begin by writing down the formula for average velocity. The average velocity of an object with position function x(t) over the time interval (t0, t1) is given by:
As the time intervals get smaller and smaller in the equation for average velocity, we approach the instantaneous velocity of an object. The formula we arrive at for the velocity of an object with position function x(t) at a particular instant of time t is thus:
Please wait while we process your payment