Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews November 29, 2024 November 22, 2024
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Summary
In Kepler and Newton we studied the basics of gravitation. Now we will explore some analytical tools that simplify the calculations involved with gravitating systems. Most of these were developed in the nineteenth century when physicists sought to solve problems involving many objects interacting under complicated conditions. One of the most important concepts that came out of their mathematical analysis was the notion of energy conservation. The idea of energy conservation necessitated the concept of potential energy, which, unlike the kinetic energy that manifests itself in motion, was considered to be the latent ability of the system to produce useful work. As we shall see, because potential energy is a scalar and not a vector, it can greatly simplify the calculation of the potential inherent in a large number of bodies at any point--the problem just reduces to summing the contributions of all the individual bodies. The force can then be found by taking the negative of the spatial derivative in the usual way (see Newton's Second Law)
We will use the concept of the gravitational potential energy to prove Newton's Shell Theorem, which asserts that a spherical mass can be treated as if all its mass were concentrated at its center for the purposes of calculating the gravitational force on an object outside it, and that a massive, thin shell exerts no gravitational force on a mass inside itself. Furthermore, we will state the Principle of Equivalence, which states that inertial mass, appearing in Newton's Second Law, is the same as the gravitational mass appearing the Universal Law of Gravitation.
Please wait while we process your payment