Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews November 29, 2024 November 22, 2024
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Problems for Principle of Equivalence and Tides 2
Problem : A rocket taking off from the earth is accelerating straight upwards at 6.6 m/sec2. How long will it take an apple of 0.2 kilograms to hit the floor of the rocket if it is dropped from a height of 1.5 meters?
The effective gravity in the spaceship is given by the gravity on earth plus the gravity due to the upward acceleration of the rocket: geff = 6.6 + 9.8 = 16.4 m/sec2. The time taken for an object to reach the ground can be determined from Galileo's kinematic equation which asserts that x = 1/2gt2, and thus t = = 0.43 secs. Of course the mass of the apple is irrelevant.Problem : If you measure the speed of light on earth, will the result be the same as of you measured it in interstellar space, far from any gravitational fields?
Einstein's principle of equivalence demands that all measurements of the speed of light be the same. Imagine a spaceship in free-fall in a gravitational field, such that it is instantaneously at rest (it has not started to fall yet). There is effectively no gravity in these spaceships. The principle of equivalence demands that there be no method of determining whether they are falling or in a gravitational field, so it must be the case that an experiment to determine the speed of light will give the same result as if the experiment was performed far from any gravitational field.Problem : If wood was found to fall at a different rate to plastic (ie.gwoodgplastic ), what would be the consequences for the principle of equivalence?
If this was found to the true, the principle of equivalence would no longer hold. It was shown (see Inertial and Gravitational Masses that the gravitational mass was equivalent to the inertial mass if and only if gwood = gplastic, and that the same was true for all other materials.Problem : A mass M is at the origin. Two masses m are at points (R, 0) and (R + x, 0) where x < < R. What is the difference in the gravitational force on the two masses? This is the longitudinal tidal force. (Hint: make some approximations)
The force is given by Newton's Universal Law:- + = -1 + |
= (- 1 + (12x/R)) = |
Problem : Again, a mass M is at the origin. Now, two masses are at (R, 0) and (R, y), where y < < R. What is the difference in the gravitational force on the two masses, and what is its effect? This is the transverse tidal force.
To second order in (y/R), both masses are equally distant from the origin, and the magnitude of the force is essentially the same. The direction of the forces, however, differs in first order (y/R). In fact, this difference is the y-component of the force on the top mass:cosθ = |
Please wait while we process your payment