Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews January 4, 2025 December 28, 2024
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Applications
The ability to solve right triangles has many applications in the real world. Many of these applications have to do with two-dimensional motion, while others concern stationary objects. We'll discuss both.
Two-dimensional motion can be represented by a vector. Every vector can be resolved into a vertical and a horizontal component. When a vector is combined with its vertical and horizontal component, a right triangle is formed.
Often the motion of a vehicle of some kind is modeled using a vector. With limited information, using right triangle solving techniques, it is possible to find out a lot about the motion of an object in a two-dimensional plane. For example, if a boat goes 12 miles in a direction 31o north of east, how far east did it travel? If the boat began at the origin, the problem looks like this in the coordinate plane: c = 12 and A = 31o. Then b = c cos(A) 10.29. So the boat went slightly more than 10 miles east on its journey.
The motion of a projectile in the air can also be easily modeled using a right triangle. The most common example of this is an airplane's motion. For example, if an airplane takes off at an angle of elevation of 15o and flies in a straight line for 3 miles, how high does it get? 3 sin(15) .78. The plane climbs about .78 miles. These types of problems use the terms angle of elevation and angle of depression, which refer to the angles created by an object's line of motion and the ground. They can be mathematically represented by a vector and a horizontal line, usually the x- axis. A zero degree angle of elevation or depression means that the object is moving along the ground--it is not in the air at all. A 90 degree angle of elevation is motion directly upward, whereas a 90 degree angle of depression is motion directly downward.
Stationary objects that form right triangles can also be examined and understood by using right triangle solving techniques. One of the most common examples of a right triangle seen in real life is a situation in which a shadow is cast by a tall object. For example, if a 40 ft. tree casts a 20 ft. shadow, at what angle from vertical is the sun shining? As the picture shows, tan(x) = = . So x = arctan() 26.6o.
Whenever you use a right triangle to model a real-life situation, it is immensely helpful to draw a picture or diagram of the situation. Then labeling the parts of the right triangle is easy and the problem can be simply solved.
Please wait while we process your payment