Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews November 27, 2024 November 20, 2024
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Applications
Three of the most common applications of exponential and logarithmic functions have to do with interest earned on an investment, population growth, and carbon dating.
When the interest earned on an investment is simple, the investor only earns interest on his initial investment. The interest earned with simple interest is the product of the interest rate, the time since the investment (usually measured in years), and the principal. The value of the an investment with simple interest after t years can be modeled by the function A(t) = P + Prt, where P is the principal, and r is the interest rate.
A compound interest plan pays interest on interest already earned. The value of an investment depends not only on the interest rate, but how frequently the interest is compounded. If, for example, a $100 investment is made with 5% interest compounded annually, after one year, the investment will be worth $105. The next year, the interest added to the value of the investment will be 5% of the $105. Compound interest causes the amount of interest earned to increase with every compounding period.
Let A(t) model the value of an investment with compound interest. A(t) = P(1 + )nt, where P is the principal, r is the interest rate, n is the number of times the interest is compounded each year, and t is the number of years since the investment was made.
When the interest on an investment is compounded continuously, a natural exponential function is used. Let the function A(t) model the value of an investment made with continuous compounding. A(t) = Pert, where P is the principal, r is the interest rate, and t is the number of years since the investment was made. Continuously compounded interest allows for the fastest growth of the value of an investment.
When a population has a constant relative growth rate, its size can be calculated using a natural exponential function. The population P after t units of time P(t) = P(0)ekt, where k is the constant relative growth rate, and P(0) is the initial population, measure at time zero. The units of time used in problems like these usually are proportional to the life span of the organisms of the population. For populations of bacteria, hours or days are common, and for people, years are common. Populations can also be shrinking. In this case, the value of k is negative--everything else remains the same.
Please wait while we process your payment