Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews November 28, 2024 November 21, 2024
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Reducing Fractions and the Least Common Denominator
Two fractions are equivalent if they express the same part of a whole. For example, 2/3 and 4/6 express the same part of a whole. 12/9 and 4/3 are also equivalent.
Two fractions are equivalent if there is a number by which both the numerator and the denominator of one fraction can be multiplied or divided to yield the other fraction. For example, we can multiply the numerator and denominator of 2/3 by 2 to yield 4/6, and we can divide the numerator and denominator of 12/9 by 3 to yield 4/3.
To find a fraction that is equivalent to another fraction but has a specified
(different) denominator, determine what the old denominator must be multiplied
by to yield the new denominator. Then multiply the old numerator by that same
number. For example, to find a fraction equivalent to 2/9 with a denominator of
45:
1. 9×5 = 45
2. 2×5 = 10
The fraction equivalent to 2/9 is 10/45.
Some fractions, like 6/8, can be written as other fractions with a lower denominator. 6/8 = 3/4 (Note that 6/8 and 3/4 are equivalent by the above definition). Others, like 5/8, cannot be written with a lower denominator. 3/4 and 5/8 are said to be in lowest terms because they cannot be reduced further.
How does one know which fractions can be reduced and which cannot be reduced? In fractions that can be reduced (fractions not in lowest terms), the numerator and the denominator share at least one common factor. In fractions that cannot be reduced (fractions in lowest terms), the numerator and the denominator share no common factors; that is, they are relatively prime.
To write a fraction in lowest terms, factor the numerator and the denominator.
Then divide both the numerator and the denominator by the greatest common
factor. For instance, take the following steps to factor
36/126:
1. Factor.36 = 2×2×3×3 and
126 = 2×3×3×7.
2. Find the GCF. The GCF of 36 and 126 is 2×3×3 = 18.
3. Divide.36/18 = 2 and 126/18 = 7.
The reduced fraction is 2/7.
Please wait while we process your payment