Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews March 21, 2025 March 14, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Applying Logic Statements to Geometry
As we study statements like "If the sun shines, then the grass will grow," it is easy to lose focus of geometry and the purpose of studying logic statements at all. The reason to become familiar with logic statements is to understand the definitions of geometric figures and terms so that they may be properly used in geometric proofs. Geometric proofs are displays of irrefutable lines of reasoning by which we can show certain things to be true beyond doubt. If a definition is improperly used or too much is assumed of a given figure, the proof is worthless.
Perhaps, in a problem, you will be given a quadrilateral and told that the opposite angles are congruent. You think that the quadrilateral might be a parallelogram, but can you be sure? The questions you ask yourself are 1) Are the opposite angles of a parallelogram always congruent?, and 2) Are there any other figures whose opposite angles are congruent? What you are actually doing is checking the truth of a statement and its converse. The first question you ask yourself translates to this statement: If a quadrilateral is a parallelogram, then its opposite angles are congruent. The second question translates to the converse of the previous statement: If the opposite angles of a quadrilateral are congruent, then it is a parallelogram. Hopefully in this situation you would realize that both the statement and its converse are true, meaning that either statement is a valid definition for parallelograms, and the figure in question definitely is a parallelogram.
Relationships like this exist all throughout geometry. It is not our ultimate goal to be able to draw a perfect truth table with 1,000 columns and one million rows! All we need to know is how to properly use and test definitions, so that we don't mislabel a figure in a proof. In some proofs, all that you'll be given is a drawing, and from it, you must figure out what kind of geometric figure it is. Remember: the process of deductive reasoning is only good if every step of the process is done correctly. When this happens, the conclusion is irrefutable, but when even one conclusion drawn is not entirely valid (i.e. a parallelogram was assumed to be a rhombus), then the entire line of reasoning is faulty and in the end, worthless. Hopefully with an understanding of logic statements, every step you take will be a step in the right direction.
Please wait while we process your payment