Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews February 19, 2025 February 12, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Basic Theorems for Triangles
Triangles are governed by two important inequalities. The first is often referred to as the triangle inequality. It states that the length of a side of a triangle is always less than the sum of the lengths of the other two sides. Can you see why this must be true? Were one side of a triangle longer than the sum of the lengths of the other two, the triangle could not exist. As one side grows, the other two collapse toward that side until the altitude from the vertex opposite the growing side eventually becomes zero. This (an altitude of zero) would happen if the length of the one side was equal to the sum of the lengths of the other two. For this reason, the length of any side must be less than the sum of the lengths of the other sides.
The second inequality involving triangles has to do with opposite angles and
sides. It states that when a pair of angles are unequal, the sides opposite
them are also unequal. The converse is true also: when a pair of sides are
unequal, so are their opposite angles. In essence, this theorem complements the
theorem involving isosceles triangles,
which stated that when sides or angles were equal, so were the sides or angles
opposite them. The theorem about unequal pairs, though, goes a little farther.
Given unequal angles, the theorem holds that the longer side of the triangle
will stand opposite the larger angle, and that the larger angle will stand
opposite the longer side. This inequality is helpful to prove triangles
aren't congruent.
A triangle's exterior angle is just like that of any polygon; it is the angle created when one side of the triangle is extended past a vertex. The exterior angle has two interesting properties that follow from one another. 1) The exterior angle at a given vertex is equal in measure to the sum of the two remote interior angles. These remote interior angles are those at the other two vertices of the triangle. 2) Knowing this, it follows that the measure of any exterior angle is always greater than the measure of either remote interior angle. The first fact (1), the equality, is useful for proving congruence; the second fact (2), the inequality, is useful for disproving congruence.
Please wait while we process your payment