Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews April 12, 2025 April 5, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Proving Congruence of Triangles
When proving that triangles are congruent, it is not necessary to prove that all three pairs of corresponding angles and all three pairs of corresponding sides are congruent. There are shortcuts. For example, if two pairs of corresponding angles are congruent, then the third angle pair is also congruent, since all triangles have 180 degrees of interior angles. The following three methods are shortcuts for determining congruence between triangles without having to prove the congruence of all six corresponding parts. They are called SSS, SAS, and ASA.
The simplest way to prove that triangles are congruent is to prove that all three sides of the triangle are congruent. When all the sides of two triangles are congruent, the angles of those triangles must also be congruent. This method is called side-side-side, or SSS for short. To use it, you must know the lengths of all three sides of both triangles, or at least know that they are equal.
A second way to prove the congruence of triangles is to show that two sides and their included angle are congruent. This method is called side-angle-side. It is important to remember that the angle must be the included angle--otherwise you can't be sure of congruence. When two sides of a triangle and the angle between them are the same as the corresponding parts of another triangle there is no way that the triangles aren't congruent. When two sides and their included angle are fixed, all three vertices of the triangle are fixed. Therefore, two sides and their included angle is all it takes to define a triangle; by showing the congruence of these corresponding parts, the congruence of each whole triangle follows.
The third major way to prove congruence between triangles is called ASA, for angle-side-angle. If two angles of a triangle and their included side are congruent, then the pair of triangles is congruent. When the side of a triangle is determined, and the two angles from which the other two sides point, the whole triangle is already determined, there is only one point, the third vertex, where those other sides could possibly meet. For this reason, ASA is also a valid shortcut/technique for proving the congruence of triangles.
Please wait while we process your payment