Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews November 28, 2024 November 21, 2024
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Derivatives of Elementary Functions
In this section we compute the derivatives of the elementary functions. We use the definition of the derivative as a limit of difference quotients. Recall that a function f is said to be differentiable at a value x in its domain if the limit
exists, and that the value of this limit is called the derivative of f at x.
A linear function has the form f (x) = ax + b. Since the slope of this line is a, we would expect the derivative f'(x) to equal a at every point in its domain. Computing the limit of the difference quotient, we see that this is the case:
f'(x) | = | ||
= | |||
= | |||
= | a | ||
= | a |
Thus the graph of the derivative is the horizontal line f'(x) = a.
Note, as a special case, that the derivative of any constant function f (x) = b is a constant function equal to 0 at every value in its domain: f'(x) = 0.
We will show in the next section that the derivative of a sum of two functions is equal to the sum of the derivatives of the two functions. For example, considering the linear function f above, let f0(x) = b and f1(x) = ax. Then f (x) = f0(x) + f1(x), so f'(x) = f0'(x) + f1'(x) = a + 0 = a, agreeing with our previous result.
Please wait while we process your payment