Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews November 28, 2024 November 21, 2024
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Enantiomers
In the previous chapter we defined stereoisomers as molecules that have the same connectivity but differ in their spatial arrangement of atoms. We saw that the rigidity of double bonds gave rise to one type of stereoisomerism, cis-trans isomerism. However, it turns out, cis-trans isomers form only a small subset of stereoisomers. A more important type of stereoisomerism arises from molecules that are chiral.
You already have some intuitive notion of what it means for an object to be chiral, which is a Greek word meaning "handed". Consider the relation between your left and right hands. They appear to be the same, and yet there are clearly some ways in which they are distinct. For example, a right glove that fits easily over your right hand will not fit over your left hand. You would have a hard time fitting a left shoe over your right foot. A pair of right-handed scissors works fine in your right hand but feels awkward when you try to use your left hand.
What does it mean for an object to be chiral? To answer this question, again consider your left and right hands. The objects look identical; in fact theyare mirror images of each other. However, they are not the same. The test used to determine whether two objects are identical is superimposability. That is, can two objects be placed in the same space in such a way that all of their components overlap? Try the test of superimposability on your left and right hands, and you should see that they are not superimposable. This allows us to define what it means for an object to be chiral:
a chiral object is one that is not superimposable on its mirror image.Conversely, an achiral object is one that is identical (superimposable) to its mirror image.
How can we tell whether a given object is chiral? The most straightforward way to determine whether a given object is chiral is to draw or visualize the object's mirror image and see if the two are identical (that is, superimposable). If the object contains an internal plane of symmetry then it must be achiral. However, as we shall see, the converse is not true: an object that has no internal plane of symmetry may also be achiral.
Molecules, like other objects, can be chiral or achiral. For example, build a model of 2-butanol (butane with an -OH substituent on the second carbon) and its mirror image:
Try to physically superimpose these models and you'll see that they're not superimposable. This means that there are two distinct versions of 2-butanol, a right-handed one and a left-handed one. Each version of 2-butanol is a chiral molecule. What is the relation between them? The two molecules are clearly isomers, and since they have the same atomic connectivities they are stereoisomers. Unlike cis-trans isomerism, this stereoisomerism arises from the ability of molecules to be chiral. A chiral molecule and its non-superimposable mirror image are special types of stereoisomers called enantiomers.
Please wait while we process your payment