Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews December 29, 2024 December 22, 2024
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Nomenclature and Isomerism
A particular carbon atom is often described in terms of its degree of branching. When a carbon is attached to only one other carbon atom, it is said to be primary(1o). Similarly carbons attached to two, three, and four other carbon atoms are secondary(2o), tertiary(3o), and quaternary(4o), respectively. Methane is not attached to any other carbons, so it forms its own category in this classification system.
Alkenes and alkynes are named with the same prefixes as their alkane counterparts but their suffixes are changed to -ene and - yne, respectively. The position of the double or triple bond within the carbon chain is denoted by the position of the carbon within the bonded pair that has the lower numbering. The numbering of the parent chain should also be oriented in such a way that the double bond receives the lowest numbering possible: A hexene with its double bond at the end should be 1-hexene, not 2-, 5-, or 6-hexene.
Alkenes have a general molecular formula CnH2n and alkynes have a genera...molecular formula of CnH(2n - 2). This trend makes sense because the presence of each pi (Π) bond removes two σ bonds available for bonding to hydrogens. We will see that there are chemical reactions that add hydrogens to C-C Π bonds and turn alkenes and alkynes into alkanes, and that there are reactions to reverse the transformation and produce alkenes and alkynes from alkanes. An alkane is said to be a saturated hydrocarbon because no more hydrogens can be added to the molecule. Conversely, alkenes and alkynes are unsaturated hydrocarbons. The number of pairs of hydrogens that a hydrocarbon is missing from (2n + 2) is its unsaturation number. A molecule's unsaturation number can be calculated from its molecular formula CnHm:
UnsaturationNumber = ((2n + 2)m) |
Other types of isomerism exist besides constitutional isomerism. Two molecules can have the same atomic connectivities and yet have different spatial arrangements of atoms. Such isomers are stereoisomers. Stereoisomerism takes many forms and will be discussed in great detail in the next chapter.
Alkenes exhibit one form of stereoisomerism. To understand how alkenes can form stereoisomers, recall that the C=C double bond consists of a σ bond between the atoms and a Π bond that lies above and below the plane of the molecule. The strength of the Π bond depends directly on the degree of physical overlap between adjacent p-orbitals. This implies that it is impossible to rotate about the double bond without breaking the Π bond completely. This requires a great deal of energy and does not occur to any appreciable extent at room temperature.
This lack of rotational freedom explains why the following two molecules cannot readily interconvert. These two molecules are stereoisomers because they have the same atomic connectivity and yet are different. The isomer in which both methyl substituents are on the same side of the double bond is called cis, meaning "same". The other isomer with substituents on opposite sides of the double bond is called trans, which means "across". This particular type of stereoisomerism is called cis-trans isomerism, or geometrical isomerism. As we'll see, cyclic alkanes can also exhibit cis-trans isomerism.
Please wait while we process your payment