Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews April 25, 2025 April 18, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Ions and Ionic Bonding
As seen in the previous section on the octet rule, atoms tend to lose or gain electrons in order to attain a full valence shell and the stability a full valence shell imparts. Because electrons are negatively charged, an atom becomes positively or negatively charged as it loses or gains an electron, respectively. Any atom or group of atoms with a net charge (whether positive or negative) is called an ion. A positively charged ion is a cation while a negatively charged ion is an anion. In this section, we briefly look at some of the processes through which electrons are gained and lost in the formation of ions.
The process of gaining or losing an electron requires energy. There are two common ways to measure this energy change: ionization energy and electron affinity.
The ionization energy is the energy it takes to fully remove an electron from the atom. Ionization energy is a property that varies predictably across the periodic table. Group I and II elements with few electrons in their outer shell have very low ionization energies, while ionization energies increase dramatically moving right along the periodic table. The octet rule gives a straightforward (albeit simplified) explanation of this trend: elements with few valence electrons (those on the left of the periodic table) readily give them up in order to attain a full octet within their inner shells.
When several electrons are removed from an atom, the energy that it takes to remove the first electron is called the first ionization energy, the energy it takes to remove the second electron is the second ionization energy, and so on. In general, the second ionization energy is greater than first ionization energy. This is because the first electron removed feels the effect of shielding by the second electron and is therefore less strongly attracted to the nucleus.
An atom's electron affinity is the energy change in an atom when that atom gains an electron. The sign of the electron affinity can be confusing. When an atom gains an electron and becomes more stable, its potential energy decreases, meaning that upon gaining an electron the atom gives off energy and the electron affinity is negative. When an atom becomes less stable upon gaining an electron, its potential energy increases, which implies that the atom gains energy as it acquires the electron. In such a case, the atom's electron affinity is positive. An atom with a negative electron affinity is far more likely to gain electrons.
Like ionization energy, electron affinity exhibits periodic trends, with electron affinities becoming increasingly negative from left to right. Remember, as the electron affinity of an atom becomes more negative, it becomes more likely for an atom to gain an electron.
Please wait while we process your payment