Suggestions
Use up and down arrows to review and enter to select.Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews November 28, 2024 November 21, 2024
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Redox Reactions
In order to keep track of the electron flow in redox reactions we will define the concept of oxidation state and provide some rules for determining the oxidation states of atoms within a compound. The oxidation state of an atom in a covalent compound is an imaginary charge assigned to that atom if all the electrons in its bonds were completely given to the more electronegative atom in the bond. Of course, if two atoms of the same element are bonded together, then the two electrons in its bond are shared equally. In ionic compounds, the charge on the ion is equal to its oxidation number. shows, using hydrogen peroxide as an example, how one calculates the oxidation state of an atom in a covalent compound.
The above procedure for assigning oxidation states leads to the following useful observations about oxidation states which you should verify given the above discussion:
Oxidation-reduction reactions, also called redox reactions, involve the transfer of electrons from one species to another. That electron transfer causes a change in oxidation state for both reactive partners. The reducing agent is oxidized, meaning that its oxidation number increases due to the loss of one or more electrons. The oxidizing agent is reduced, meaning that its oxidation number has decreased due to the gain of one or more electrons. For example, the between permanganate and iron metal in acidic aqueous solution involves the transfer of five electrons to each permanganate (the oxidizing agent) from iron (the reducing agent).
Balancing redox equations by inspection is quite difficult, as you must take into account not only the mass balance but also the charge balance in the equation. To aid in this task a set of rules, called the Half-Reaction Method, has been devised. The following rules work for reactions performed in acidic or in basic solution.
1. Separate oxidation and reduction half-reactions:
2. Balance all atoms except for hydrogen and oxygen in each half-reaction.
In this example
they are already balanced.
Please wait while we process your payment