Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews February 9, 2025 February 2, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Nucleotides and Nucleic Acids
Hydrogen bonding is essential to the three-dimensional structure of DNA. These bonds do not, however, contribute largely to the stability of the double helix. Hydrogen bonds are very weak interactions and the orientation of the bases must be just right for the interactions to take place. While the large number of hydrogen bonds present in a double helix of DNA leads to a cumulative effect of stability, it is the interactions gained through the stacking of the base pairs that leads to most of the helical stability.
Hydrogen bonding is most important for the specificity of the helix. Since the hydrogen bonds rely on strict patterns of hydrogen bond donors and acceptors, and because these structures must be in just the right spots, hydrogen bonding allows for only complementary strands to come together: A- T, and C-G. This complementary nature allows DNA to carry the information that it does.
Chargaff's rule states that the molar ratio of A to T and of G to C is almost always approximately equal in a DNA molecule. Chargaff's Rule is true as a result of the strict hydrogen bond forming rules in base pairing. For every G in a double-strand of DNA, there must be an accompanying complementary C, similarly, for each A, there is a complementary paired T.
Each strand of DNA wraps around the other in a right-handed configuration. In other words, the helix spirals upwards to the right. One can test the handedness" of a helix using the right hand rule. If you extend your right hand with thumb pointing up and imagine you are grasping a DNA double helix, as you trace upwards around the helix with your fingers, your hand is moving up. In a left-handed helix, in order to have your hand move upwards with your thumb pointing up, you would need to use your left hand. DNA is always found in the right-handed configuration.
As a result of the double helical nature of DNA, the molecule has two asymmetric grooves. One groove is smaller than the other. This asymmetry is a result of the geometrical configuration of the bonds between the phosphate, sugar, and base groups that forces the base groups to attach at 120 degree angles instead of 180 degrees. The larger groove is called the major groove while the smaller one is called the minor groove.
Since the major and minor grooves expose the edges of the bases, the grooves can be used to tell the base sequence of a specific DNA molecule. The possibility for such recognition is critical, since proteins must be able to recognize specific DNA sequences on which to bind in order for the proper functions of the body and cell to be carried out. As you might expect, the major groove is more information rich than the minor groove. This fact makes the minor groove less ideal for protein binding.
Please wait while we process your payment