Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews May 6, 2025 April 29, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Thermodynamic Variables
We've stressed that our analysis of systems rests upon knowing just a few variables, instead of trying to find out variables affecting individual particles. To this end, we will talk about 6 variables in particular that can be used to determine the energy of a system.
We have already been introduced to the entropy σ and the temperature τ as variables. There are two more variables that are so common in everyday usage that they don't warrant a close look, namely the number N of particles in a system and the volume V of a system. That leaves two more variables to understand before we can dive into the study of systems.
Suppose that we have two systems, each consisting of the same single chemical species, which come into thermal and diffusive contact (meaning that particles can move between them). Note that thermal contact alone prohibits such an exchange. Imagine what happens when you touch a radiator - there is certainly a thermal contact, as you feel the heat of the radiator. However, there isn't much of a diffusive contact, as your hand doesn't suddenly melt into the radiator and become replaced in part by metal!
Now, our chemical intuition tells us that the particles will flow from the denser system to that which is less dense. We will formalize this notion by introducing the chemical potential μ, which governs how particles will flow between two systems. For now, we can think of the chemical potential as follows:
The chemical potential can be defined in different manners as well, and we will address this shortly.
Nevertheless, we can say now that particles will flow from a system with a higher chemical potential to a system with a lower chemical potential if the two are in diffusive and thermal contact.
Please wait while we process your payment