Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews January 11, 2025 January 4, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Problems 3
Problem :
A popular yo-yo trick is to have the yo-yo "climb" the string. A yo-yo with mass .5 kg and moment of inertia of .01 begins by rotating at an angular velocity of 10 rad/s. It then climbs the string until the rotation of the yo-yo stops completely. How high does the yo-yo get?
We solve this problem using conservation of energy. Initially the yo- yo has purely rotational kinetic energy, as it rotates in place at the bottom of the string. As it climbs the string some of this rotational kinetic energy is converted to translational kinetic energy, as well as gravitational potential energy. Finally, when the yo-yo reaches the top of its climb, the rotation and translation stops, and all of the initial energy is converted to gravitational potential energy. We may assume the system conserves energy, and equate initial and final energy, and solve for h:
Ef | = | Eo | |
mgh | = | Iσ2 | |
h | = | ||
= | |||
= | .102 meters |
Problem :
A ball with moment of inertia of 1.6, mass of 4 kg, and radius of 1 m rolls without slipping down an incline which is 10 meters high. What is the speed of the ball when it reaches the bottom of the incline?
Again, we use conservation of energy to solve this problem of combined rotational and translational motion. Fortunately, since the ball rolls without slipping, we can express the kinetic energy in terms of only one variable, v, and solve for v. If the ball did not roll without slipping, we would also have to solve for σ, which would imply that the problem would not have a solution. Initially, the ball is at rest and all energy is stored in gravitational potential energy. When the ball reaches the bottom of the incline, all the potential energy is converted to both rotational and translational kinetic energy. Thus, like any conservation problem, we equate initial and final energies:
Ef | = | Eo | |
Mv2 + I | = | mgh | |
(4)v2 + (1.6) | = | (4g)(10) | |
2v2 + .8v2 | = | 40g | |
v | = | = 11.8 m/s |
Please wait while we process your payment