Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews February 12, 2025 February 5, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Conservation of Angular Momentum
From the work done in the last section we can easily derive the principle of conservation of angular momentum. After we have established this principle, we will examine a few examples that illustrate the principle.
Recall from the last section that τext = . In light of this equation, consider the special case of when there is no net torque acting on the system. In this case, must be zero, implying that the total angular momentum of a system is constant. We can state this verbally:
If no net external torque acts on a system, the total angular momentum of the system remains constant.This statement describes the conservation of angular momentum. It is the third of the major conservation laws encountered in mechanics (along with the conservation of energy and of linear momentum).
There is one major difference between the conservation of linear momentum and conservation of angular momentum. In a system of particles, the total mass cannot change. However, the total moment of inertia can. If a set of particles decreases its radius of rotation, it also decreases its moment of inertia. Though angular momentum will be conserved under such circumstances, the angular velocity of the system might not be. We shall explore these concepts through some examples.
Consider a spinning skater. A popular skating move involves beginning a spin with one's arms extended, then moving the arms closer to the body. This motion results in an increase of the speed with which the skater rotates increases. We shall examine why this is the case using our conservation law. When the skater's arms are extended, the moment of inertia of the skater is greater than when the arms are close to the body, since some of the skater's mass decreases the radius of rotation. Because we can consider the skater an isolated system, with no net external torque acting, when the moment of inertia of the skater decreases, the angular velocity increases, according to the equation L = Iσ.
Another popular example of the conservation of angular momentum is that of a person holding a spinning bicycle wheel on a rotating chair. The person then turns over the bicycle wheel, causing it to rotate in an opposite direction, as shown below. Initially, the wheel has an angular momentum in the upward direction. When the person turns over the wheel, the angular momentum of the wheel reverses direction. Because the person-wheel-chair system is an isolated system, total angular momentum must be conserved, and the person begins to rotate in an opposite direction as the wheel. The vector sum of angular momentum in a) and b) is the same, and momentum is conserved. This example is quite counterintuitive. It seems odd that simply moving a bicycle wheel would cause one to rotate. However, when observed from the standpoint of conservation of momentum, the phenomena makes sense.
We have now completed our study of angular momentum, and have likewise come to the end of our examination the mechanics of rotation. Since we have already examined the mechanics of linear motion, we can now describe basically any mechanical situation. The union of rotational and linear mechanics can account for almost any motion in the universe, from the motion of planets to projectiles.
Please wait while we process your payment