Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews January 2, 2025 December 26, 2024
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
SN2 and E2 Reactions
SN2 and E2 reactions are two of the most common and useful substitution and elimination reactions. Each mechanism deserves a methodical explanation. First, the rate law will tell us what reactant molecules are present in the rate-limiting transition state. Since SN2 and E2 are concerted, each has only one step. Therefore the rate-limiting transition state given by the rate law is the only transition state of the reaction. Second, the stereochemistry of each mechanism will be tested by making the α-carbon a stereocenter. Third, steric and molecular orbital arguments will explain why the reaction proceeds through the observed pathway.
The descriptions of SN2 and E2 reactions contain many references to stereochemistry, conformational analysis, and molecular orbital theory.
Rate and stereochemical experiments show that the SN2 mechanism proceeds through nucleophilic backside attack on the α-carbon with inversion of stereochemical configuration. Similar experiments with E2 reactions reveal the elimination of a β-hydrogen and the formation of a double bond. When more than one β-hydrogen is present, more substituted alkenes are formed preferentially according to Saytzeff's rule.
The SN2 and E2 reactions share a great number of similarities. Both require a good leaving group. SN2 reactions require a good nucleophile, while E2 reactions require a good base. In most cases, however, a good nucleophile is also a good base. Thus SN2 and E2 often compete in the same reaction conditions. The winner is determined by the degree of α and β branching and the strength of the nucleophile/base. Increased α and β branching and strong basicity favor E2 elimination. Increased nucleophilicity favors the SN2 reaction.
Please wait while we process your payment