Please wait while we process your payment
If you don't see it, please check your spam folder. Sometimes it can end up there.
If you don't see it, please check your spam folder. Sometimes it can end up there.
Please wait while we process your payment
By signing up you agree to our terms and privacy policy.
Don’t have an account? Subscribe now
Create Your Account
Sign up for your FREE 7-day trial
By signing up you agree to our terms and privacy policy.
Already have an account? Log in
Your Email
Choose Your Plan
Individual
Group Discount
Save over 50% with a SparkNotes PLUS Annual Plan!
Purchasing SparkNotes PLUS for a group?
Get Annual Plans at a discount when you buy 2 or more!
Price
$24.99 $18.74 /subscription + tax
Subtotal $37.48 + tax
Save 25% on 2-49 accounts
Save 30% on 50-99 accounts
Want 100 or more? Contact us for a customized plan.
Your Plan
Payment Details
Payment Summary
SparkNotes Plus
You'll be billed after your free trial ends.
7-Day Free Trial
Not Applicable
Renews March 1, 2025 February 22, 2025
Discounts (applied to next billing)
DUE NOW
US $0.00
SNPLUSROCKS20 | 20% Discount
This is not a valid promo code.
Discount Code (one code per order)
SparkNotes PLUS Annual Plan - Group Discount
Qty: 00
SparkNotes Plus subscription is $4.99/month or $24.99/year as selected above. The free trial period is the first 7 days of your subscription. TO CANCEL YOUR SUBSCRIPTION AND AVOID BEING CHARGED, YOU MUST CANCEL BEFORE THE END OF THE FREE TRIAL PERIOD. You may cancel your subscription on your Subscription and Billing page or contact Customer Support at custserv@bn.com. Your subscription will continue automatically once the free trial period is over. Free trial is available to new customers only.
Choose Your Plan
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
For the next 7 days, you'll have access to awesome PLUS stuff like AP English test prep, No Fear Shakespeare translations and audio, a note-taking tool, personalized dashboard, & much more!
You’ve successfully purchased a group discount. Your group members can use the joining link below to redeem their group membership. You'll also receive an email with the link.
Members will be prompted to log in or create an account to redeem their group membership.
Thanks for creating a SparkNotes account! Continue to start your free trial.
We're sorry, we could not create your account. SparkNotes PLUS is not available in your country. See what countries we’re in.
There was an error creating your account. Please check your payment details and try again.
Please wait while we process your payment
Your PLUS subscription has expired
Please wait while we process your payment
Please wait while we process your payment
Introduction to Organic Molecules
As the term "organic" implies, organic chemistry had its origins in the study of natural compounds extracted from living organisms. It was believed that these compounds contained a "vital force" that was responsible for life processes. This theory of "vitalism" held that organic compounds were somehow beyond the grasp of experimental science. Vitalism was disproved when Friederich Wohler accidentally created the organic compound urea by heating ammonium cyanate, which was classified as inorganic.
Since then, the definition of organic chemistry has been expanded to the study of compounds that contain carbon. Carbon is special for several reasons:
Indeed, almost all molecules of biological importance are built on such carbon frameworks. However, carbon-containing molecules are useful not only to biological systems but in industries as diverse as pharmaceutical medicine, food, clothing, communications, and heavy industry. The task of organic chemists is two-fold: to study organic molecules from a theoretical perspective and to learn new strategies for the synthesis and application of complex molecules in these industries.
The simplest organic molecules are hydrocarbons, compounds that contain only carbon and hydrogen. Two broad classes of hydrocarbons are aliphatic hydrocarbons and aromatic hydrocarbons. Aromatic hydrocarbons contain benzene-like structures, and we'll see in upcoming chapters that such compounds exhibit special chemistry. Aliphatic hydrocarbons don't contain benzene rings and typically consist of carbon chains connected by single, double, and triple bonds. Aliphatic hydrocarbons that contain only single bonds are alkanes. Hydrocarbons that contain double bonds are alkenes and those with triple bonds are alkynes.
We begin our study of organic molecules with alkanes, chains of carbon atoms held by single bonds. Even simple alkanes exhibit the structural diversity mentioned previously: an alkane can be unbranched or branched, and it can also loop back on itself to form a cyclic alkane. Cyclic alkanes will be considered separately later in this chapter. All acyclic alkanes (unbranched and branched) have the characteristic molecular formula CnH(2n + 2), where n is the number of carbon atoms in the chain. gives the molecular formulas and Lewis structure for the unbranched, or n-alkanes (n stands for normal). Notice that each n-alkane differs from the next one in the series by a (-CH2-), or methylene group.
As you can see from the structures in the figure above, drawing out full Lewis structures even for simple organic molecules can be quite tedious. Several shorthand notations are used by organic chemists to designate molecules more complex than methane and ethane. A condensed structural formula omits the single bonds to hydrogens. Sometimes even the carbon-carbon bonds are omitted. For example, hexane can be drawn using the following condensed structures.
Please wait while we process your payment